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Outline

Modern global systems need new tools for 
data storage with the necessary quality

• Distributed file systems:
– Google File System

– Hadoop file system

• NoSQL Distributed storage systems
– Cassandra

– MongoDB



Google File System (GFS)

• GFS exploits Google hardware, data, and application 
properties to improve performance

– Large scale: thousands of machines with thousands of 
disks

– Component failures are ‘normal’ events
• Hundreds of thousands of machines/disks

• MTBF of 3 years/disk  100 disk failures/day

• Additionally: network, memory, power failures

– Files are huge (multi-GB file sizes are the norm)
• Design decision: difficult to manage billions of small files

– File access model: read/append
• Random writes practically non-existent

• Most reads sequential

Design criteria

• Detect, tolerate, and recover from failures 
automatically

• “Modest” number of large files
– Just a few millions

– Each 100MB – multi-GB

– Few small files

• Read-mostly workload
– Large streaming reads (multi-MB at a time)

– Large sequential append operations
• Provide atomic consistency to parallel writes with low overhead

• High sustained throughput more important than low 
latency



Design decisions

• Files stored as chunks

– Stored as local files on Linux file system

• Reliability through replication (3+ replicas)

• Single master to coordinate access, keep metadata

– Simple centralized design (one master per GFS cluster)

– Can make better chunk placement and replication decisions 
using global knowledge

• No caching

– Large data set/streaming reads render caching useless

– Linux buffer cache to keep data in memory

– Clients cache meta-data (e.g., chunk location)

Read operation

GFS architecture

• One master server (state replicated on backups)

• Many chunk servers (100s – 1000s)
– Spread across racks for better throughput & fault tolerance

– Chunk: 64 MB portion of file, identified by 64-bit, globally unique ID

• Many clients accessing files stored on same cluster
– Data flow: client <-> chunk server (master involved just in control)



More on metadata & chunks

• Metadata

– 3 types: file/chunk namespaces, file-to-chunk 

mappings, location of any chunk replicas

– All in memory (< 64 bytes per chunk)

• GFS capacity limitation

• Large chunk have many advantages

• Fewer client-master interactions and reduced size 

metadata

• Enable persistent TCP connection between clients and 

chunk servers

Mutations, leases, version numbers

• Mutation: operation that changes the contents (write, 
append) or metadata (create, delete) of a chunk

• Lease: mechanism used to maintain consistent mutation 
order across replicas
– Master grants a chunk lease to one replica (primary chunk server)

– Primary picks a serial order to all mutations to the chunk (many 
clients can access chunk concurrently)

– All replicas follow this order when applying mutations

• Chunks have version numbers to distinguish between up-
to-date and stale replicas 
– Stored on disk at master and chunk servers

– Each time master grants new lease, increments version & informs all 
replicas



Mutations step-by-step

1. Identities of primary chunk server 

holding lease and secondaries

holding the other replicas

2. Reply

3. Push data to all replicas for 

consistency (see next slide for details)

4. Send mutation request to primary,

which assigns it a serial number

5. Forward mutation request to all 

secondaries, which apply it according 

to its serial number

6. Ack completion

7. Reply (an error in any replica results 

in an error code & a client retry)

Data flow

Client can push the data to any replica

Data is pushed linearly along a carefully picked chain 
of chunk servers

• Each machine forwards data to “closest” machine in 
network topology that has not received it

• Network topology is simple enough that “distances” can be 
accurately estimated from IP addresses

• Method introduces delay, but offers good bandwidth
utilization

• Pipelining: servers receive and send data at the same 
time



Consistency model

• File namespace mutations (create/delete) are atomic

• State of a file region depends on

– Success/failure of mutation (write/append)

– Existence of concurrent mutations

• Consistency states of replicas and files:

– Consistent: all clients see same data regardless of replica

– Defined: consistent & client sees the mutation in its entirety

• Example of consistent but undefined: initial record = AAAA; 

concurrent writes: _B_B and CC__; result = CCAB (none of the 

clients sees the expected result)

– Inconsistent: due to a failed mutation

• Clients see different data function of replica

How to avoid the undefined state? 

• Traditional random writes require expensive synchronization 
(e.g., lock manager)
• Serializing writes does not help (see previous slide)

• Atomic record append: allows multiple clients to append 
data to the same file concurrently
• Serializing append operations at primary solves the problem

• The result of successful operations is defined

• “At least once” semantics

• Data is written at least once at the same offset by all replicas

• If one operation fails at any replica, the client retries; as a result, 
replicas may contain duplicates or fragments

• If not enough space in chunk, add padding and return error

• Client retries



How can the applications deal with 
record append semantics?

• Applications should include checksums in 

records they write using record append

– Reader can identify padding/record fragments 

using checksums

• If application cannot tolerate duplicated records, 

should include unique ID in record

– Readers can use unique IDs to filter duplicates

HDFS (another distributed file system)

• Master/slave architecture
– NameNode is master (meta-data operations, access control)

– DataNodes are slaves: one per node in the cluster

Inspired by 
GFS



Distributed Storage Systems:
The Key-value Abstraction

• (Business) 

Key  Value

• (twitter.com) 

tweet id  information about tweet

• (amazon.com) 

item number  information about it

• (kayak.com) 

Flight number  information about flight, 
e.g., availability

• (yourbank.com) 

Account number  information about it

The Key-value Abstraction (2)

• It’s a dictionary data structure organization
insert, lookup, and delete by key
– E.g., hash table, binary tree

• But distributed

• Sound familiar? 
Recall Distributed Hash tables (DHT) in 
P2P systems

• It is not surprising that key-value stores 
reuse many techniques from DHTs



Isn’t that just a database? 

• Yes, sort of…
• Relational Database Management Systems 

(RDBMSs) have been around for ages
• MySQL is the most popular among them
• Data stored in tables
• Schema-based, i.e., structured tables
• Each row (data item) in a table has a primary key 

that is unique within that table
• Queried using SQL (Structured Query Language)
• Supports joins
• …

Relational Database Example

Example SQL queries 
1. SELECT zipcode

FROM users 
WHERE name = “Bob”

2.    SELECT url
FROM blog
WHERE id = 3

3. SELECT users.zipcode, 
blog.num_posts
FROM users JOIN blog
ON users.blog_url = 

blog.url

user_id name zipcode blog_url blog_id

101 Alice   12345   alice.net 1

422 Charlie 45783  charlie.com 3

555 Bob     99910  bob.blogspot.com 2

users table

Primary keys

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 4/2/13 10003

3 charlie.com 6/15/14 7

blog table

Foreign keys



Mismatch with today workloads 

• Data: Large and unstructured

• Lots of random reads and writes

• Sometimes write-heavy

• Foreign keys rarely needed

• Joins rare

Needs of Today Workloads

• Speed

• Avoid Single point of Failure (SPoF)

• Low TCO (Total cost of operation) 

• Fewer system administrators

• Incremental Scalability

• Scale out, not up
– What?



Scale out, not Scale up

• Scale up = grow your cluster capacity by 
replacing with more powerful machines
– Traditional approach
– Not cost-effective, as you’re buying above the sweet 

spot on the price curve
– And you need to replace machines often

• Scale out = incrementally grow your cluster 
capacity by adding more COTS machines 
(Components Off the Shelf)
– Cheaper
– Over a long duration, phase in a few newer 

(faster) machines as you phase out a few older 
machines

– Used by most companies who run datacenters 
and clouds today

Key-value/NoSQL Data Model

• NoSQL = “Not Only SQL”
• Necessary API operations: get(key) and put(key, 

value)
– And some extended operations, e.g., “CQL” in Cassandra 

key-value store

• Tables
– “Column families” in Cassandra, “Table” in HBase, 

“Collection” in MongoDB
– Like RDBMS tables, but … 
– May be unstructured: May not have schemas 

• Some columns may be missing from some rows

– Don’t always support joins or have foreign keys
– Can have index tables, just like RDBMSs



Key-value/NoSQL Data Model 

• Unstructured

• Columns 
Missing from 
some Rows

• No schema 
imposed

• No foreign 
keys, joins 
may not be 
supported

user_id name zipcode blog_url

101 Alice   12345   alice.net

422 Charlie charlie.com

555 99910  bob.blogspot.com

users table

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 10003

3 charlie.com 6/15/14

blog table

Key
Value

Key

Value

Column-Oriented Storage

NoSQL systems often use column-oriented storage

• RDBMSs store an entire row together (on disk or 
at a server)

• NoSQL systems typically store a column together 
(or a group of columns) 
– Entries within a column are indexed and easy to locate, given a key (and 

vice-versa)

• Why useful?
– Range searches within a column are fast since you don’t need to fetch the 

entire database

– E.g., Get me all the blog_ids from the blog table that were updated within 
the past month 

• Search in the the last_updated column, fetch corresponding blog_id column

• Don’t need to fetch the other columns



Cassandra

• A distributed key-value store
• Intended to run in a datacenter (and also 

across DCs)
• Originally designed at Facebook
• Open-sourced later, today an Apache project
• Some of the companies that use Cassandra in 

their production clusters
– IBM, Adobe, HP, eBay, Ericsson, Symantec
– Twitter, Spotify
– PBS Kids
– Netflix: uses Cassandra to keep track of your 

current position in the video you’re watching

Cassandra Architecture

Messaging 
Layer

Cluster 
Membership

Failure 
Detector

Storage 
Layer

Partitioner Replicator

Cassandra API Tools



Let’s go Inside Cassandra: 
Key -> Server Mapping

• How do you decide which server(s) a 
key-value resides on?

Cassandra Key -> Server Mapping



Data Placement Strategies
• Replication Strategies, two possibilities:

1. SimpleStrategy

2. NetworkTopologyStrategy

1. SimpleStrategy: uses the Partitioner, of which there are two kinds

1. RandomPartitioner: Chord-like hash partitioning

2. ByteOrderedPartitioner: Assigns ranges of keys to servers. 

• Easier for range queries (e.g., Get me all twitter users starting 
with [a-b])

2. NetworkTopologyStrategy: for multi-DC deployments

– Two replicas per DC

– Three replicas per DC

– Per DC

• First replica placed according to Partitioner

• Then go clockwise around ring until you hit a different rack

Snitches

• Maps: IPs to racks and DCs. Configured in 
cassandra.yaml config file

• Some options:
– SimpleSnitch: Unaware of Topology (Rack-unaware)

– RackInferring: Assumes topology of network by octet of 
server’s IP address

• 101.201.202.203 = x.<DC octet>.<rack octet>.<node octet>

– PropertyFileSnitch: uses a config file

– EC2Snitch: uses EC2.
• EC2 Region = DC

• Availability zone = rack

• Other snitch options available



Writes 

• Need to be lock-free and fast (no reads or disk 
seeks)

• Client sends write to one coordinator node in 
Cassandra cluster 
– Coordinator may be per-key, or per-client, or per-query
– Per-key Coordinator ensures writes for the key are 

serialized
• Coordinator uses Partitioner to send query to all 

replica nodes responsible for key
• When X replicas respond, coordinator returns an 

acknowledgement to the client
– X? We’ll see later.

Writes (2)

• Always writable: Hinted Handoff mechanism
– If any replica is down, the coordinator writes to all 

other replicas, and keeps the write locally until 
down replica comes back up.

– When all replicas are down, the Coordinator (front 
end) buffers writes (for up to a few hours). 

• One ring per datacenter
– Per-DC coordinator elected to coordinate with 

other DCs
– Election done via Zookeeper, which implements

distributed synchronization and group services
(similar to JGroups reliable multicast)



Writes at a replica node

On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

– Memtable = In-memory representation of multiple key-value 
pairs

– Typically append-only datastructure (fast)
– Cache that can be searched by key
– Write-back cache as opposed to write-through

Later, when memtable is full or old, flush to disk
– Data File: An SSTable (Sorted String Table) – list of key-value 

pairs, sorted by key
– SSTables are immutable (once created, they don’t change)
– Index file: An SSTable of (key, position in data sstable) pairs
– And a Bloom filter (for efficient search) – next slide

Writes: distributed architecture

Key (CF1 , CF2 , CF3)

Commit Log
Binary serialized 

Key ( CF1 , CF2 , CF3 )

Memtable ( CF1)

Memtable ( CF2)

Memtable ( CF2)

• Data size

• Number of Objects

• Lifetime

Dedicated Disk

<Key name><Size of key Data><Index of columns/supercolumns>< 
Serialized column family> 

---

---

---

---

<Key name><Size of key Data><Index of columns/supercolumns>< 
Serialized column family>

BLOCK Index  <Key Name> Offset, <Key Name> Offset

K128 Offset

K256 Offset

K384 Offset

Bloom Filter

(Index in memory)

Data file on disk



Bloom Filter

• Compact way of representing a set of items

• Checking for existence in set is cheap

• Some probability of false positives: an item not in set may 
check true as being in set

• Never false negatives On insert, set all hashed bits.

On check-if-present, 
return true if all hashed bits set.
• False positives

False positive rate low
• m=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

Large Bit Map
0
1

2
3

69

127

111

Key-K

Hash1

Hash2

Hashm

.

.

Compaction

Data updates accumulate over time and 
SStables and logs need to be compacted

– The process of compaction merges 
SSTables, i.e., by merging updates for a 
key

– Run periodically and locally at each server



Compaction at work

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

--

--

--

Sorted

K2 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

--

--

--

Sorted

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

--

--

--

Sorted

MERGE  SORT

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

Sorted

K1   Offset

K5  Offset

K30  Offset

Bloom Filter

Loaded in memory

Index File

Data File

D E L E T E D

Deletes

Delete: don’t delete item right away
– Add a tombstone to the log 

– Eventually, when compaction encounters 
tombstone it will delete item



Reads 

Read: Similar to writes, except
– Coordinator can contact X replicas (e.g., in same rack)

• Coordinator sends read to replicas that have responded quickest in 
past

• When X replicas respond, coordinator returns the latest-
timestamped value from among those X

• (X? We’ll see later.)

– Coordinator also fetches value from other replicas
• Checks consistency in the background, initiating a read repair if 

any two values are different

• This mechanism seeks to eventually bring all replicas up to date

– At a replica
• Read looks at Memtables first, and then SSTables

• A row may be split across multiple SSTables => reads need to 
touch multiple SSTables => reads slower than writes (but still fast)

Reads: distributed architecture 

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if 
digests differ



Membership

• Any server in cluster could be the 
coordinator

• So every server needs to maintain a list 
of all the other servers that are currently 
in the server

• List needs to be updated automatically 
as servers join, leave, and fail

Cluster Membership – Gossip-Style 

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol: 

• Nodes periodically gossip their 
membership list

• On receipt, the local membership list 
is updated, as shown

• If any heartbeat older than Tfail, node 
is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(Remember this?)



Suspicion Mechanisms in Cassandra

• Suspicion mechanisms to adaptively set the timeout 
based on underlying network and failure behavior

• Accrual detector: Failure Detector outputs a value (PHI) 
representing suspicion

• Apps set an appropriate threshold

• PHI calculation for a member
– Inter-arrival times for gossip messages

– PHI(t) = 

– log(CDF or Probability(t_now – t_last))/log 10

– PHI basically determines the detection timeout, but takes into account 
historical inter-arrival time variations for gossiped heartbeats

• In practice, PHI = 5 => 10-15 sec detection time

Cassandra Vs. RDBMS

• MySQL is one of the most popular (and has been 
for a while)

• On > 50 GB data
• MySQL 

– Writes 300 ms avg
– Reads 350 ms avg

• Cassandra 
– Writes 0.12 ms avg
– Reads 15 ms avg

• Orders of magnitude faster
• What’s the catch? What did we lose?



Eventual Consistency 

• If all writes stop (to a key), then all its values 
(replicas) will converge eventually.

• If writes continue, then system always tries to 
keep converging.
– Moving “wave” of updated values lagging behind the latest values 

sent by clients, but always trying to catch up.

• May still return stale values to clients (e.g., if 
many back-to-back writes).

• But works well when there a few periods of low 
writes – system converges quickly.

RDBMS vs. Key-value stores

• While RDBMS provide ACID 
– Atomicity 
– Consistency 
– Isolation
– Durability

• Key-value stores like Cassandra provide 
BASE
– Basically Available Soft-state Eventual 

Consistency
– Prefers Availability over Consistency



Back to Cassandra: Mystery of X

• Cassandra has consistency levels

• Client is allowed to choose a consistency level 
for each operation (read/write)
– ANY: any server (may not be replica)

• Fastest: coordinator caches write and replies quickly to 
client

– ALL: all replicas
• Ensures strong consistency, but slowest

– ONE: at least one replica
• Faster than ALL, but cannot tolerate a failure

– QUORUM: quorum across all replicas in all 
datacenters (DCs)

• What?

Quorums?

In a nutshell:

• Quorum = majority 

– > 50%

• Any two quorums 
intersect

– Client 1 does a write 
in red quorum 

– Then client 2 does 
read in blue quorum

• At least one server in 
blue quorum returns 
latest write

• Quorums faster than 
ALL, but still ensure 
strong consistency



Quorums in Detail

• Several key-value/NoSQL stores (e.g., Riak
and Cassandra) use quorums.

• Reads
– Client specifies value of R (≤ N = total number 

of replicas of that key). 
– R = read consistency level.
– Coordinator waits for R replicas to respond 

before sending result to client. 
– In background, coordinator checks for 

consistency of remaining (N-R) replicas, and 
initiates read repair if needed.

Quorums in Detail (Contd.)

• Writes come in two flavors
– Client specifies W (≤ N)

– W = write consistency level.

– Client writes new value to W replicas and 
returns. Two flavors:

• Coordinator blocks until quorum is reached.

• Asynchronous: Just write and return.



Quorums in Detail (Contd.)

• R = read replica count, W = write replica count
• Two necessary conditions:

1. W+R > N
2. W > N/2

• Select values based on application 
– (W=1, R=1): very few writes and reads
– (W=N, R=1): great for read-heavy workloads
– (W=N/2+1, R=N/2+1): great for write-heavy 

workloads
– (W=1, R=N): great for write-heavy workloads with 

mostly one client writing per key

Cassandra Consistency Levels (Contd.)

• Client is allowed to choose a consistency level for each 
operation (read/write)
– ANY: any server (may not be replica)

• Fastest: coordinator may cache write and reply quickly to client
– ALL: all replicas

• Slowest, but ensures strong consistency
– ONE: at least one replica

• Faster than ALL, and ensures durability without failures

– QUORUM: quorum across all replicas in all 
datacenters (DCs)

• Global consistency, but still fast

– LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

– EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical 

replies



MongoDB in a nutshell

• Document-oriented

• Collection partitioning using a shard key:
o Hashed-based to obtain a (not always) balanced distribution

• Distributed architecture:
• Router to accept and route 

incoming requests 
coordinating with Config
Server

• Shard to store data

• Pros
• Adding/removing shards

• Automatic balancing

• Cons
• Max document size 16Mb

Data Model

• Stores data in form of BSON (Binary 
JavaScript Object Notation) documents

{
name: "travis",
salary: 30000,
designation: "Computer Scientist",
teams: [ "front-end",  "database" ]

}

• Group of related documents with a 
shared common index is a collection



MongoDB: Typical Query

Query all employee names with salary greater than 18000 sorted in
ascending order

db.employee.find({salary:{$gt:18000}, {name:1}}).sort({salary:1})

Collection Condition Projection          Modifier

{salary:25000, …}

{salary:10000, …}

{salary:20000, …}

{salary:2000, …}

{salary:30000, …}

{salary:21000, …}

{salary:5000, …}

{salary:50000, …}

{salary:25000, …}

{salary:20000, …}

{salary:30000, …}

{salary:21000, …}

{salary:50000, …}

{salary:20000, …}

{salary:21000, …}

{salary:25000, …}

{salary:30000, …}

{salary:50000, …}

Insert

Insert a row entry for new employee Sally

db.employee.insert({
name: "sally",
salary: 15000,
designation: "MTS",
teams: [ "cluster-management" ]
})`



Update

All employees with salary greater than 18000 
get a designation of Manager

db.employee.update(
Update Criteria {salary:{$gt:18000}},
Update Action {$set: {designation: "Manager"}},
Update Option {multi: true}

)

Multi-option allows multiple document update

Delete

Remove all employees who earn less than 
10000

db.employee.remove(
Remove Criteria {salary:{$lt:10000}},

)

Can accept a flag to limit the number of 
documents removed



Typical MongoDB Deployment

• Data split into chunks, 
based on shard key (~ 
primary key)

• Either use hash or 
range-partitioning

• Shard: collection of 
chunks

• Shard assigned to a 
replica set 

• Replica set consists of 
multiple mongod servers 
(typically 3 mongod’s)

• Replica set members are 
mirrors of each other

• One is primary
• Others are 

secondaries
• Routers: mongos server 

receives client queries and 
routes them to right replica 
set

• Config server: Stores 
collection level metadata.

MongodMongodConfig

Router (mongos)
Router (mongos)

MongodMongodmongod
MongodMongodmongod

1

54

3

2

6

Replica Set

Replication

Secondary

Primary

SecondaryHeartbeat

Write Read



Replication

• Uses an oplog (operation log) for data 
sync up
– Oplog maintained at primary, delta 

transferred to secondary continuously/every 
once in a while

• When needed, leader Election protocol 
elects a master

• Some mongod servers do not maintain 
data but can vote – called as Arbiters

Read Preference

Determine where to route read operation

Default is primary
Some other options are 

– primary-preferred

– secondary

– nearest

• Helps reduce latency, improve throughput

• Reads from secondary may fetch stale data



Write Concern

• Determines the guarantee that MongoDB
provides on the success of a write operation

• Default is acknowledged (primary returns 
answer immediately). 
– Other options are 

• journaled (typically at primary)

• replica-acknowledged (quorum with a value of W), etc.

• Weaker write concern implies faster write 
time

Write operation performance

• Journaling: Write-ahead logging to an on-
disk journal for durability

• Journal may be memory-mapped

• Indexing: Every write needs to update every 
index associated with the collection



Balancing

• Over time, some chunks may get larger than 
others

• Splitting: Upper bound on chunk size; when 
hit, chunk is split

• Balancing: Migrates chunks among shards if 
there is an uneven distribution

Consistency

• Strongly Consistent: Read Preference is 
Master

• Eventually Consistent: Read Preference is 
Slave (Secondary or Tertiary)

• CAP Theorem: With Strong consistency, 
under partition, MongoDB becomes write-
unavailable thereby ensuring consistency


